A Tapplied system technologies ${ }^{\text {TM }}$

Infinite Advantages. Infinite Possibilities.

Imagine a solid metal piping system that offers superior strength within a lightweight design. A system that's easy to install, yet ensures high performance and versatility. At Applied Systems Technologies, that's just what we did to create Infinity the first all-metal, quick-connect piping system at an affordable price.

Heralded for its innovative design, Infinity offers the performance of heavy, traditional steel piping, at the cost of systems using plastic. Its revolutionary lock-and-seal design ensures a totally safe, leak-free system for all compressed air, vacuum, and inert gas applications.

Getting Down to Brass Facts

The heart of Infinity is solid brass, nickel-plated fittings that make the system easy to use and install. Infinity's powder-coated aluminum pipes are so light, they can be handled and installed by one person. Yet when coupled with solid brass fittings, the system yields unbeatable performance and reliability.

Making Connections That Last

Unlike plastic piping systems which fail with age and wear, Infinity provides reliability and durability that can only be achieved through an all-metal system - plus some unique advantages.

- Fittings can be disconnected and reconnected for reuse.
- Leak-free connectors provide an immediate, unbreakable seal.
- Lightweight piping remains unaffected by contaminants in the air.

Installation That's a Snap

Infinity offers the easiest, fastest installation available. There's no welding, gluing or threading, and very little skill is needed for a professional installation. In fact, a simple pipe cutter and de-burring pipe reamer are the only tools required.
"Having a totally metal design provides an integrity that cannot be matched by any other system."

Ready for Anything

With six different piping sizes, Infinity is a sure fit for virtually any industrial and OEM application, including aerospace, automotive, chemical processing, electronics, engineering, food and beverage, packaging, pharmaceuticals, and textiles. Our standard, color-coded design affords three separate systems that can be easily identified by staff members:

- Blue for compressed air
- Grey for vacuum
- Black for inert gasses

Simply the Best

Most importantly, Infinity is backed by over five decades of Applied System Technologies' experience and outstanding service. Regardless of your system application, no other system offers more advantages or possibilities than Infinity.

Solid metal, solid performance, solid value. Infinity - for a world under pressure.

Technical Characteristics

Technical characteristics pertinent to the tubes

90000
Calibrated Aluminum Piping

Outside	Pressure	Weight	Length
mm (in.)	bar / PSI	lbs./ft.	ft .
20 (0.75")	15 / 220	0.159	16^{\prime}
25 (1")	15/220	0.202	16^{\prime}
32 (1.25")	15/220	0.262	16^{\prime}
40 (1.5")	15 / 220	0.331	16^{\prime}
50 (2")	15/220	0.592	16^{\prime}
63 (2.5")	15/220	0.623	16^{\prime}

EXTRUDED ALUMINUM	UNI 9006/1 Al Mg 0.5 Si 0.4 Fe 0.2
CHEMICAL COMPOSITION	Si: $0.3 \div 0.6-\mathrm{Mg}: 0.35 \div 0.6-\mathrm{Fe}: 0.10 \div 0.30$
DESIGNATIONS UNI EN 573-3	EN AW 6060
HEAT TREATMENT	BONIFICATO " T5 "/DRAINED " T5 "
SURFACE TREATMENT	Electrostatic painting
SPECIFIC WEIGHT	$2.70 \mathrm{Kg} / \mathrm{dm} 3$
SPECIFIC RESISTANCE	3.25μ \% cm
THERMAL CONDUCTIVITY	$1.75 \mathrm{~W} /\left(\mathrm{cm}^{\circ} \mathrm{K}\right)$
EXPANSION COEFFICENT	$0.024 \mathrm{~mm} /\left(\mathrm{m}^{\circ} \mathrm{C}\right)$
SPECIFIC HEAT AT $100^{\circ} \mathrm{C}\left(212^{\circ} \mathrm{F}\right)$	$0.92 \mathrm{~J} /\left(\mathrm{g}{ }^{\circ} \mathrm{K}\right)$
BEARING TENSILE STRESS	$205 \mathrm{~N} / \mathrm{mm} 2$
COEFFICENT OF ELASTICITY	$66000 \mathrm{~N} / \mathrm{mm} 2$
PROPORTIONALITY DEVIATION LOAD	$165 \mathrm{~N} / \mathrm{mm} 2$
BRINELL HARDNESS	$60 \div 70 \mathrm{HB}$
MELTING POINT	$600^{\circ} \mathrm{C}\left(1112^{\circ} \mathrm{F}\right)$
PERCENTANGE ELONGATION	10 \%

INSTALLATION OF PIPING

1

1. Remove burrs from the outside diameter of the tube. Clean and remove any shavings.
2. Add oil on tube before inserting the fitting.
3. Fittings D20, D25, D32 and D40mm are supplied fully assembled. Insert the tube into the fitting. To make insertion easier, rotate the tube on itself while making the connection. Be sure tubing is securely inserted in the fitting.

Diameter	Torque
20	$300 \mathrm{cN} . \mathrm{m}(26 \mathrm{in}-\mathrm{lbs})$
25	$300 \mathrm{cN} . \mathrm{m}(26 \mathrm{in}-\mathrm{lbs})$
32	$400 \mathrm{cN} . \mathrm{m}(35 \mathrm{in}-\mathrm{lbs})$
40	$650 \mathrm{cN} . \mathrm{m}(58 \mathrm{in-lbs})$

IMPORTANT - Only for installation of piping diameter 50 and 63

4

4. Only for tube diameters D50 and D63mm. To facilitate installation, fittings are supplied with unscrewed nuts. Once the tube is inserted into the fitting, tighten the nuts to the torque specified below.

Diameter	Torque
50	65 N.m (48 ft-lbs)
63	65 N.m $(48 \mathrm{ft}-\mathrm{lbs})$

SIZING A COMPRESSED AIR SYSTEM

To determine the required diameter of a pipe required for your system, it is important to know three basic parameters:

WORKING PRESSURE The required system working pressure. (The common pressure used in compressed air systems is 125 psi.)

LENGTH OF PIPING The combined length of piping between the compressors and the most distant point of use.

FLOW RATE The consumption rate of equipment that is to be connected to the piping system, or the total combined flow rate of the air compressor(s) that will feed the system.

Use the table below to match the HP/flow rate of your compressor to the correct size piping for your system.

AIR COMPRESSOR TO PIPE SIZE SELECTION CHART

Compressor	Pipe Diameter		Typical Compressor Flow
HP	mm	(in.)	CFM @125psi
3	20 mm	(0.75")	14
5	20 mm	(0.75")	21
7.5	20 mm	(0.75")	34
10	25 mm	(1")	44
15	25 mm	(1")	66
20	32 mm	(1.25")	88
25	32 mm	(1.25")	112
30	32 mm	(1.25")	132
40	40 mm	(1.5")	168
50	40 mm	(1.5")	220
60	50 mm	(2")	258
75	50 mm	(2")	322
100	63 mm	(2.5")	425
125	63 mm	(2.5")	540

Pipe sizes indicated are only guidelines. Each compressor manufacturer states different equipment flow rates which should be checked against our selection chart. Always select a pipe size that allows for future expansion of your system. Our selection chart above allows for a minimum 15% expansion increase.

FLOW RATES THROUGH INFINITY PIPING

Pipe Inte	Diameter	CFM	CFM	CFM	CFM
mm	(in.)	@ 125psi	@ 150psi	@ 175psi	@ 220psi
20 mm	(0.75")	36	39	42	48
25 mm	(1")	76	81	88	99
32 mm	(1.25")	146	158	171	189
40 mm	(1.5")	266	291	310	348
50 mm	(2")	476	526	565	627
63 mm	(2.5")	881	965	1047	1153

Flow rates are based on a 1 psi pressure drop per 100 ft run of pipe and couplings in a "straight line."
For loop systems, flow rates can be doubled.

Example:

100 ft run of 2 " pipe flows 476 cfm at 125 psig with a pressure drop of 1 psig. If a system is designed in a loop configuration, a flow of 952 cfm with a pressure loss of 1 psig per 200 ft of piping and couplings can be achieved. The 1 psi pressure loss will only occur if the compressor system is flowing the maximum flow capacity of the piping selected.

Flows are measured at standard atmospheric conditions: $1013 \mathrm{mbar}(14.7 \mathrm{psi})$ at $20^{\circ} \mathrm{C}-\left(68^{\circ} \mathrm{F}\right)$.

It is vital that the size of the piping between the compressors and the connection of the loop system can flow the full capacity of the combined compressor output.

LINEAR EXPANSION AND CONTRACTION

All materials expand and contract under the effects of temperature change. To allow for this, use the following formula during system installation.

$$
\Delta \mathbf{L}=\Delta \mathbf{T} \mathbf{X} \mathbf{L} \mathbf{X} \mathbf{a} \text { i.e.: }
$$

$\Delta \mathrm{L}=$ Linear expansion - shrinkage in mm
$\Delta \mathrm{T}=$ Heat variation between operating temperature and the installation @ $1^{\circ} \mathrm{C}$
$\mathrm{L}=$ Tube length in mm
$a=$ Linear expansion factor for aluminum is $0.024 \mathrm{~mm} / \mathrm{m}^{\circ} \mathrm{C}$

- When attaching tubing to a solid structure, use only Infinity tube clamp brackets which allow for expansion and contraction.
- When installing a system, be sure to allow for movement as shown in the diagram above.

INFINITY

90000 - VACUUM Vacuum Piping - Grey

90000 - GAS Inert Gases Piping - Black

90011
Male Thread Connectors

90040 Straight Unions

9013090° Union Elbows

D	B	C	E	L	$\mathrm{CH1}$	CH 2	Part Number
20	32.5	18	34.5	51	21	30	$90130-20$
25	38	23	42.5	61.5	26	35	$90130-25$
32	46	28	52	74.5	34	45	$90130-32$
40	52	34	63	86.5	41	55	$90130-40$
50	63.5	40.5	73	104	50	65	$90130-50$
63	75.5	52	92	127.5	65	70	$90130-63$

* All dimensions are measured in mm.
9014045° Union Elbow

Tube mm	Inches	Part Number
20	.75	$90140-20$
25	1	$90140-25$
32	1.25	$90140-32$
40	1.5	$90140-40$
50	2	$90140-50$
63	2.5	$90140-63$

D	E	B	C 1	C 2	L 1	L 2	$\mathrm{CH1}$	CH 2	Part Number
20	34.5	32.5	32.5	21.5	98	54.5	21	30	$90230-20$
25	42.5	38	37.5	26	113.5	65	26	35	$90230-25$
32	52	46	46.5	31.5	138.5	77	34	45	$90230-32$
40	63	52	55.5	38	159.5	90	41	55	$90230-40$
50	73	63.5	69	44.5	196	108	50	65	$90230-50$
63	92	75.5	87	55.5	238.5	131	65	70	$90230-63$

* All dimensions are measured in mm .

90235
Outlet/Reducing Tee Fitting

The particular internal geometric shape allows a fitting to be used vertically, as well as horizontally. During horizontal installation, please keep the two internal holes turned up toward the upper side.

D 1	D 2	B 1	B 2	C 1	C 2	E 1	E 2	L 1	L 2	CH	CH 1	CH 2	Part Number
20	20	32.5	32.5	32.5	21.5	34.5	34.2	98	54.5	21	21	30	$90235-20-20$
25	20	38	32.5	45.5	26.5	42.5	34.5	121.5	59	35	35	30	$90235-25-20$
32	20	46	32.5	54.5	30.5	52	34.5	146.5	63	45	45	30	$90235-32-20$
32	25	46	38	54.5	31.5	52	42.5	146.5	70	45	45	35	$90235-32-25$
40	20	52.5	32.5	60	33.5	63	34.5	165.5	66	55	55	30	$90235-40-20$
40	25	52.5	38	60	34.5	63	42.5	165.5	87	55	55	35	$90235-40-25$
50	20	63.5	32.5	73.5	40.5	73	34.5	201	73	65	65	30	$90235-50-20$
50	25	63.5	38.5	73.5	41	73	42.5	201	80	65	65	35	$90235-50-25$
50	32	63.5	46	73.5	41	73	52	201	87.5	65	65	45	$90235-50-32$
63	20	77	32.5	86	48.5	92	34.5	237.5	81	80	70	30	$90235-63-20$
63	25	77	38.5	86	49	92	42.5	237.5	88	80	70	35	$90235-63-25$
63	32	77	46	86	49	92	52	237.5	95.5	80	70	45	$90235-63-32$

* All dimensions are measured in mm .

OUTLET/REDUCING TEE FITTING

The fitting is a valid alternative to the traditional swan neck, and proves itself as a fast and low-cost solution. The efficient internal system allows air to reach the point-of-use and drain toward the most convenient low point of the system, so that no moisture stays within the main circuit.

This fitting is also an alternative to a traditional goose neck (up and over) take-off point. It prevents water from dropping out of the main piping loop into the drop line. All systems should be installed with a slight gradient to allow moisture to collect at one point in the system. This point should be fitted with a drop line and terminated with a condensate drain.

90240 Outlet, Saddle Clamp Reducer

Tube mm	Outlet mm	Out-Inches	Part Number
32	20	.75	$90240-32-20$
32	25	1	$90240-32-25$
40	20	.75	$90240-40-20$
40	25	1	$90240-40-25$
50	20	.75	$90240-50-20$
50	25	1	$90240-50-25$
63	20	.75	$90240-63-20$
63	25	1	$9240-63-25$

90241 Cutting Tool, Saddle Clamp

Tube mm	Part Number
$32-40$	$90241-32-40$
$50-63$	$90241-50-63$

90260 Drain Assembly

90601

Outlet Elbow c/w Mtg Bracket

D	F	B	C	E	L 1	L2	L3	Lmax	Lmin	CH 1	CH 2	Part Number
20	$0.5^{\prime \prime}$	32.5	18.5	34.5	35	51	35	40	22	21	30	$90601-20-08$
25	$0.5^{\prime \prime}$	38	23	42.5	37	62	39	40	22	26	35	$90601-25-08$
32	$0.5^{\prime \prime}$	46	28	52	41	74.5	48.5	40	22	34	45	$90601-32-08$

[^0]90610

D	L	E	CH 2	Part Number
20	33	34.5	30	$90610-20$
25	39	42.5	35	$90610-25$
32	46.5	52	45	$90610-32$
40	53	63	55	$90610-40$
50	62	73	65	$90610-50$
63	74.5	92	70	$90610-63$

* All dimensions are measured in mm .

90620 Reducer, Fiting Body to Tube

Body	Outlet mm	Out-Inches	Part Number
25	20	.75	$90620-25-20$
32	20	.75	$90620-32-20$
32	25	1	$90620-32-25$
40	20	.75	$90620-40-20$
40	25	1	$90620-40-25$
40	32	1.25	$90620-40-32$
50	25	1	$90620-50-25$
50	32	1.25	$90620-50-32$
50	40	1.5	$90620-50-40$
63	40	1.5	$90620-63-40$
63	50	2	$90620-63-50$

90626 Stem Adapter

90700 Ball Valve, Tube to Tube

Tube mm	Inches	Part Number
20	.75	$90700-20$
25	1	$90700-25$
32	1.25	$90700-32$
40	1.5	$90700-40$
50	2	$90700-50$
63	2.5	$90700-63$

90820 Hanging - Clamping Bracket

H	H	Part Number
20	$\mathrm{M} 6 / \mathrm{M} 10\left(5 / 16^{\prime \prime}\right) /\left(3 / 8^{\prime \prime}\right)$	$90820-20$
25	$\mathrm{M} 6 / \mathrm{M} 10\left(5 / 16^{\prime \prime}\right) /\left(3 / 8^{\prime \prime}\right)$	$90820-25$
32	$\mathrm{M} 6 / \mathrm{M} 10\left(5 / 16^{\prime \prime}\right) /\left(3 / 8^{\prime \prime}\right)$	$90820-32$
40	$\mathrm{M} 6 / \mathrm{M} 10\left(5 / 16^{\prime \prime}\right) /\left(3 / 8^{\prime \prime}\right)$	$90820-40$
50	$\mathrm{M} 6 / \mathrm{M} 10\left(5 / 16^{\prime \prime}\right) /\left(3 / 8^{\prime \prime}\right)$	$90820-50$
63	$\mathrm{M} 6 / \mathrm{M} 10\left(5 / 16^{\prime \prime}\right) /\left(3 / 8^{\prime \prime}\right)$	$90820-63$

[^1]

H	L	Part Number
$120\left(4.72^{\prime \prime}\right)$	$210\left(8.2^{\prime \prime}\right)$	90830

* All dimensions are measured in mm.
$90830 W_{\text {Wie }}$ Honging System

$20-63 \mathrm{~mm}$	Part Number
10 ft lengths $\times \mathrm{pk}$ of 10	$90830-10$
15 ft lengths $\times \mathrm{pk}$ of 10	$90830-15$

* All dimensions are measured in mm.

90825 Wall Bracket w/ Stud

A T applied system technologies ${ }^{\text {m" }}$
80191
Quick Coupler, Universal Socket

	Part Number
$1 / 4^{\prime \prime}$ NPT Male	$80191-04$
$3 / 8^{\prime \prime}$ NPT Male	$80191-06$
$1 / 2^{\prime \prime}$ NPT Male	$80191-08$

80193 Quick Coupler, Universal Socket

80221 Plug

	Part Number
$1 / 4^{\prime \prime}$ NPT Male	$80221-04$
$3 / 8^{\prime \prime}$ NPT Male	$80221-06$
$1 / 2^{\prime \prime}$ NPT Male	$80221-08$

80222 Plug

80223 Plug

	Part Number
$1 / 4^{\prime \prime}$ Hose Barb	$80223-04$
$3 / 8^{\prime \prime}$ Hose Barb	$80223-06$
$1 / 2^{\prime \prime}$ Hose Barb	$80223-08$

90870 Tube Cutier

* All dimensions are measured in mm .

82600 Twoway Outet Y Adapior

A	B	B 1	L	CH	Part Number
NPTf					
$0.5{ }^{\prime \prime}$	14	17	58	26	$82600-08-08$

* Threads in npt.

Other dimensions are measured in mm.
$86300 / 86310$ Ball Valves

NPT		Part Number
$0.5^{\prime \prime}$	Female / Female Ball Valve	$86300-08-08$
$0.5^{\prime \prime}$	Male / Female Ball Valve	$86310-08-08$

90900 Electronic Drain Valves

[^2]

PRECISION SYSTEM CONTROLLERS

It's no secret that if your system is losing air, you're losing money. By precisely controlling the pressure that enters a compressed air system, Infinity's system controllers reduce costs and energy. After all, isn't that what you expect from your system controller?

INCREASE SAVINGS

Our Precision System Controllers lower costs several ways. First, because Infinity eliminates leaks that are common in other piping systems, less compressed air is lost to the atmosphere. Since less air volume is used, you can decrease the compressor load, saving valuable kilowatts. In fact, our controllers reduce kilowatt usage by 7% for every 14 psi reduction in system pressure.

Second, by reducing system pressure to the minimum needed for production demands, you increase available compressor air capacity. This helps protect production equipment from high air pressure that can cause costly system failure and productivity downtime. And by reducing the load and wear on compressors, our controllers greatly extend the life of your overall system.

EASY INSTALLATION

Like our Infinity piping system, our Precision System Controllers install quickly, using pipe-in/pipeout operation. Simply install your PSC downstream of the air storage tank, and set the pressure to the required level. Once installed, you can rely on zero maintenance and total protection for all downstream equipment.

PSC- Range

Applied System Technologies offers two types of high-performance system controllers:

- High-flow 1", $1.5^{\prime \prime}$ and 2 " units for inlet pressures of up to 145 psi.
- High-pressure 1" units for reciprocating compressors that typically operate between working pressures of 150 psi and 175 psi.

Our high-flow units feature a unique poppet design that permits a large volume air flow, and allows a system to react instantly to demand for a constantly stable air system pressure. The high-pressure 1" controllers incorporate a more traditional design, using a spring/diaphragm arrangement to achieve constant system pressure control.

PSC SPECIFICATIONS

PSC 1 HF
Thread connections 1" NPT female

Pressure range $0-145 \mathrm{psi}$
Control range $7-100 \mathrm{psi}$
Flow range 350 cfm
Operating temperature $140^{\circ} \mathrm{F}$
Repeatability $+-2 \%$ of full span

PSC 1.5 HF
Thread connections 1.5" NPT female

Pressure range $0-145 \mathrm{psi}$
Control range $7-100 \mathrm{psi}$
Flow range 1050 cfm
Operating temperature $140^{\circ} \mathrm{F}$
Repeatability $+-2 \%$ of full span

PSC 2 HF

Thread connections 2" NPT female
Pressure range 0-145psi
Control range 7-100psi
Flow range 1050 cfm
Operating temperature $140^{\circ} \mathrm{F}$
Repeatability $+-2 \%$ of full span

PSC-HP 1
Thread connections 1" NPT female

Pressure range $0-150 \mathrm{psi}$
Control range $7-125 \mathrm{psi}$
Flow range 150 cfm
Operating temperature $140^{\circ} \mathrm{F}$
Repeatability $+.3 \%$ of full span

PSC-HP 1-X
Thread connections 1" NPT female
Pressure range $0-175 \mathrm{psi}$
Control range 7 -145psi
Flow range 150cfm
Operating temperature $140^{\circ} \mathrm{F}$
Repeatability $+-3 \%$ of full span
applied system technologies"

The Calhoun Building
9800 West Kincey Avenue
Suite 135
Huntersville, North Carolina 28078
P. 704.947.6966
F. 704.947.6965

www.appliedsystemtech.com

> Nothing contained on these pages is intended to extend any warranty or representation, expressed or implied, regarding the product described herein. Any such warranties or other terms and conditions of sale of products shall be in accordance with Applied System Technologies standard terms and conditions for such products, which are available upon request.
> Product improvement is a continuing goal at Applied System Technologies.
> Designs and specifications are
> subject to change without
> notice or obligation.

[^0]: * Threads in npt.

 Other dimensions are measured in mm .

[^1]: * All dimensions are measured in mm .

[^2]: * All dimensions are measured in mm.

